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An iterative algorithm for solving nonlinear inverse problems in remote sensing of 
density protiles of a simple ocean model by using acoustic pulses is developed. Here the 
adiabatic sound velocity is assumed to be proportional to the inverse square root of the 
density. The basic idea of this new algorithm is that first, the original pulse problem in the 
time domain is reduced to a continuous wave problem in the frequency domain and then 
the nonlinear inverse problem in the frequency domain is solved by a hybrid of a Newton- 
like iterative method, Backus and Gilbert linear inversion technique, and the finite difference 
method. This new computational algorithm is tested by numerical simulations with given 
data from 10 different frequencies and is found to give excellent results. The effects of 
taking data from various frequency ranges and of the contaminating instrument and 
ambient noise on the accuracy and efficiency of numerical computation are investigated. 
It is found that the low frequency data are preferred over the data from the high frequency 
spectrum. Under favorable conditions, the maximum pointwise numerical error of the 
density profile p(x) is less than 5 % of the total variation of the density profile, 

ptu = j Max p(x) - Min &)I. 

Better result can be achieved if a large number of data are available and more efforts are 
made in the numerical computation. 

INTRODUCTION 

Ocean density profiles can be computed from a finite number of experimental data 
obtained through acoustic remote sensing techniques as opposed to in situ mea- 
surement. Often these types of remote sensing problems can be formulated as 
“improperly posed” linear or nonlinear inverse problems of partial differential 
equations in mathematical analysis, and usually the solution of an inverse problem is 
not unique and does not depend continuously on the given data. To solve linear or 
nonlinear inverse problems is equivalent to constructing approximate solutions of 
linear or nonlinear operator equations from inadequate data with or without statistical 
measurement errors. While the computational methods for solving the traditional 
direct problems of partial differential equations, e.g., the finite difference method, the 
finite element method, their hybrids, etc., are quiet well developed, the numerical 
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methods for solving inverse problems are still in their infancies. Hence the need of 
new developments in the computational methods for solving inverse problems is 
definitely in order. 

Recently, several iterative algorithms for solving inverse problems of nonlinear 
operator equations in Banach spaces have been developed by Chen and Surmont [l, 21, 
and they have been used for solving a nonlinear radiative transfer problem in the 
remote sensing of atmospheric temperature profiles [3]. These algorithms are basically 
hybrids of Newton’s iterative methods in Banach spaces [4] and the linear inversion 
technique of Backus and Gilbert (B & G) [5-71. Of course, many other linear inversion 
techniques, e.g., the regularization method of Tihonov [8], the Moore-Penrose 
pseudoinverse method [9], etc., can be used just the same. But, the B & G method is 
preferred here for the reason that it not only provides an inversion tehcnique, but also 
can be used as a diagnostic tool for testing the intrinsic resolution of a given set of 
data for a given problem (or mathematically, provides a sort of pointwise error 
estimates). More recently, Tsien and Chen [IO] has introduced a hybrid of the above- 
mentioned iterative algorithms and the finite difference method to infer the ocean 
density profiles by using low frequency acoustic continuous wave (CW) measurements 
with success; the frequency range is such that the ocean depth is in the range of one 
to four wavelengths. 

Now, a numerical algorithm for solving the nonlinear inverse problem in remote 
sensing of density profiles of a simple ocean model by using acoustic pulses is devel- 
oped in this paper. Here the adiabatic sound velocity is assumed to be proportional 
to the inverse square root of the density function. The basic idea of this algorithm is 
that the incident and reflected acoustic pulses are assumed to be known at the surface 
of the ocean; through Fourier sine or cosine transform with respect to time t, the 
original pulse problem in time domain is reduced to a CW problem in frequency 
domain. Hence the numerical method of [lo] can be applied. This new computational 
algorithm is tested by numerical simulation and it is found to give excellent results. 
The effects of taking data from various ranges of the frequency spectrum as the 
input to the numerical algorithm on the accuracy and efficiency of computations are 
thoroughly studied; the entire frequency range is such that the ocean depth is in the 
range of 1 to 320 wavelengths. Moreover, the effects of the contaminating instrument 
and ambient noise on the accuracy of the numerical results or the intrinsic resolution 
of a given set of measured data are carefully investigated. Finally, a comprehensive 
discussion of the numerical results and their implication in actually implementing this 
computational algorithm is given. 

It should be pointed out that there are two basic differences between the new 
numerical algorithm here and the conventional approach [I l-181 for solving inverse 
Sturm-Liouville problems. First, a precise knowledge of complete sets of eigenvalues 
of a particular Sturm-Liouville problem and its associated problems is needed to solve 
the inverse problem uniquely in the conventional approach, but no such knowledge 
is needed in the new numerical algorithm here. As a matter of fact, here the choice 
of the discrete values in frequency domain {wi}, i = 1, 2,..., I (not the square roots of 
the eigenvalues) is completely arbitrary. Hence they can be chosen for practical and 
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computational conveniences. Second, the concept of the uniqueness of solutions, 
which is a major concern in the conventional approach, is replaced here by a weaker 
but more practical one, “the closeness of different numerical solutions to a solution.” 
In the new numerical algorithm here, each iterative calculation with different initial 
iterate will converge to a different but unique numerical solution [2]; nevertheless this 
nonuniqueness poses no real difficulty for practical problems. If several different 
numerical solutions are all close enough to the exact solution, then in practical sense 
any one of them will be an acceptable good solution. Hence in the new numerical 
algorithm here, the major concern is the closeness of different numerical solutions 
to the exact solution. In general, the “closeness” is characterized qualitatively by the 
“spread of the averaging kernel,” i.e., the smaller the spread, the closer is the numerical 
solution to the actual solution. This is because the “spread” characterizes the 
“closeness” of the numerical solutions of the individual interate linearized problem 
and the new numerical algorithm here can be shown to be a Newton-like iterative 
method whose accuracy is in direct proportion to the numerical accuracy in com- 
puting the individual iterate [2]. The “spread” is a by-product in the process of 
computing the numerical solution. The quantitative information on the closeness 
can be obtained by performing simple numerical simulations. 

FORMULATION OF THE PROBLEM 

The hydrodynamic structure of the ocean is assumed to be a compressible, inviscous, 
and stratified fluid layer above a rigid plane (Fig. 1). The linearized governing 
equations in remote sensing of ocean density profiles by using acoustic pulses are [19] 

au/at = -p-l appx, O<X<H, 

applat = -pc2 au/ax, 0 < t, 
(1) 

with initial conditions 

u(x, 0) = 0, 

P(X, 0) = 0, 

and boundary conditions 

u(H, t) = 0, 

Pa 0 = f(t), 

(2) 

where p is the pressure, u is the particle velocity, p is the equilibrium density, c is the 
adiabatic sound velocity related to p through the known equation of state c = 
(pK>-1’2 [20], K is the compressibility coefficient which is assumed to be constant, 
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FIG. 1. Ocean layer with a rigid bottom. 

and f(t) is a pulse function with a given duration which corresponds to the incident 
pulse. 

The mathematical problem in remote sensing of ocean density profiles is to deter- 
mine the density function from Eqs. (l)-(3) and ap/ax jzFO . To transform the above- 
mentioned pulse problem in the time domain to its corresponding CW problem in the 
frequency domain, the Fourier transform with respect to t is needed. In particular, 
due to the homogeneous initial conditions the Fourier sine transform is applied to 
Eqs. (l)-(3). Upon eliminating the Fourier sine transform of u, Eqs. (l)-(3) lead to a 
Sturm-Liouville type of ordinary differential equation for p(x, w), the Fourier sine 
transform of p, 

d/dx (p-’ dpldx) + w2Kp = 0, 

P(0, w) = f(w), 
44x, w)ldx LH = 0, 

(4 

where f(w) is the Fourier sine transform off(t) and o is the angular frequency. 
Upon normalizing K to unity and introducing the dimensionless variables, 

x’ = x/K P’ = P/f(w), P’ = p/p(O), and w’ = wH/c(O), Eq. (4) becomes 

d/dx (p-l dpldx) + w2p = 0, 

P(0, w) = 1, 
dp(x, w)ldx L = 0, 

(5) 

where p(O) and c(0) are the values of p(x) and c(x) at x = 0 and they are assumed to be 
known. Here the primes are dropped for convenience. 

Now, the inverse problem is to determine p(x) from (5) and the known values of 
dp(0, w)/dx for a set of {wi>, i = 1,2 ,..., I. Although Eq. (5) is a linear ordinary 
differential equation, the inverse problem is nonlinear in nature. 
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NUMERICAL ALGORITHM 

In general, a nonlinear inverse problem can be solved by using the iterative 
algorithms of [l-3]. For the nonlinear inverse problem here, a variant of the above- 
mentioned iterative algorithms is used and it is presented in the following. 

Let 

P?lfl = Pn -I- 6Pn 2 PWl = Pn + 6Pn, n = 0, 1, 2,... (6) 

be the (n + 1)th iterates of p and p such that j 6p, 1 < 1 pn 1, j 6p, 1 < 1 pn 1, and 
Q,(O) = 0. The p,, and p. are the initial guess. Upon substituting (6) into (5) and 
neglecting terms of O{(Sp,J2}, O{(Sp,)2} and higher, one obtains 

4W,14nlW + w2pn = 0, 

Pn@, m> = 1, dp,(x, w),‘dx jxzl = 0, 
(7) 

and 

dldx(p,l dSp,Jdx) + co2 6p, = d/dx(pi2 Sp, dp,ldx), 

P,@, WI = 0, d6p,(x, o)/dx /zzl = 0. 
(8) 

By using the method of Green’s function [21], after a considerable amount of 
manipulation one obtains a Fredholm integral equation of the first kind which relates 
,4x> to d~p,dx, w)ldx Lo 3 

I : tp?(x') dpn( x’, w)/dx’}2 Sp,(x’) dx’ = dSp,(x, o)/dx l2so . (9) 

Now the inverse problem is reduced to for each iteration the determination of 
6p,(x) from a set of measured data {d6p(O, &)/dx}, i = 1,2,3,..., I. These measured 
data are used as the input data to the right-hand side of Eq. (9) for the purpose of 
accelerating the rate of convergence. This inverse problem can be solved by the linear 
inversion technique of B & G [5-71. It starts with 

Sp,(x) = c e,(x) dSp(0, 4ldx. 
i=l 

(10) 

Upon substituting Eq. (10) into Eq. (9), one obtains the integral expression, 

+dx) = j”’ A&, x? ~pn(x’> dx’, 
0 

where 

An(X, X’) = i &n(X) b’IE*(X’) &(X’s wJ/dx’)2, 
i=l 

(12) 
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is known as the “averaging kernel” and is subjected to the normalization condition, 

1 
1 

A,(x, x’) dx’ = 1. (13) 
0 

The “spread of A, from x” is defined by 

Q,(x, A,) = I2 s,’ (x - x’)~ An2(x, x’) dx’. (14) 

If the measured data are errorless, the set of unknown functions {ai,(x 
i = 1) 2, 3 )...) Z, should be chosen such that the averaging kernel A, resembles the 
Dirac delta function 8(x’ - x) most closely, or equivalently, the positive-definite 
quadratic form of (ai,(x i = 1, 2, 3 ,..., Z, Qn(x, A,) is minimized subject to the 
constraint (13). Hence the method of Lagrange multipliers is used. 

If the measured data contain errors, then the variance of the density error CJ,~(X) 
incurred at x due to random measurement errors can be found from Eq. (10) to be 

un2(x) = A,(x) * B * A,(x), (15) 

where the vector a,(x) = {ai,(x i = 1,2, 3 ,..., Z, 2 is the covariance tensor for the 
random errors of {dp(O, wi)/dx}, i = 1, 2, 3 ,..., Z, and the means of the random errors 
are assumed to be zero. 

Ideally, one would like to be able to choose A,(x) such that both u,~(x) and 
Qn(x, A,) are minimized. However, this cannot be done, but it is possible to minimize 
a linear combination of (T,~(x) and Q&c, A,), 

G, = (1 - S) QJx, A,) + SU.,~(X). (16) 

By varying the parameter s between zero and unity, the emphasis can be shifted from 
minimization of the spread to minimization of the error. Thus, there is a trade-off 
between intrinsic resolution and the accuracy in the presence of measurement errors. 
The best choice for s must be determined by the particular problem. 

Now, for a given value of s the minimization of G, subject to the constraint Eq. (13) 
gives 

Al,(x) = r@;‘(x) * I?,/& * V(x) ’ 8, ) 

where the matrix mm(x) is defined by 

R$4 = (1 - s) &nw + s-82 

with the elements of &Jx), 

(17) 

(18) 

q&x) = 12 [’ (x - x’)” (p;‘(x’) dp,(x’, w,)/dx’}2 . (p;l(x’) dpn(x’ . w,)/dx’}2 dx’, 
JO 

i,j= 1,2,3 ,..., Z (19) 
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and the components of 8, , 

bi, = 1’ {p,‘(x’) dpn(x’, ~i)/dx’}~ dx’, i = 1, 2, 3,. . ., I. 
0 

(20) 

Finally for each iterate, once d%(x) is known from Eq. (17), 6p,(x) can be calculated 
from Eq. (10). 

PROCEDURE! FOR NUMERICAL SIMULATION 

In order to test the feasibility and to study the general characteristics of the new 
computational algorithm without the real measurement data, a numerical simulation 
must be carried out. The procedure is: 

(I) First, a typical density profile of the ocean [20] p*(x) is assumed to be the 
correct density function. The corresponding pressures {p*(x, w$)> are obtained from 
Eq. (5) for a set of angular frequencies {wi}, i = 1,2, 3,..., I, by solving the two-point 
boundary value problem. Then by a finite difference approximation, {dp*(O, a~~)/&}, 
i = 1, 2, 3 ,..., Z, are obtained as the equivalence of the measured data. 

(II) The measurement errors can be simulated by multiplying the data, 
{dp*(O, o+)/dx}, i = 1, 2, 3 ,..., Z, by corresponding factors, ((1 + ZcRJ}, i = I,. 2, 
3,..., I, where k is the amplitude factor (k = 0.001 used here) and Ris are the random 
numbers generated by a random number generator subroutine [22]. 

(III) Next, pa(x) is assumed. Then {po(x, wi)> and (dpo(O, wJdx}, i = 1,2, 
3 ,..., Z, are determined from Eq. (7) by using the same numerical methods as those of 
of Step I. Next, the nonhomogeneous term of Eq. (9) can be computed as 
d 6p,(O, q)/dx = (1 + kRJ 4*(0, q)/dx - dp,(O, w,)/dx. 

(IV) Finally, 8po(x) is obtained from Eq. (9) and the data {d6p,(O, w,)/dx}, 
i = 1, 2, 3 ,..., Z, by using the linear inversion technique of B & G [5-71, described 
in the previous section. Hence from Eq. (6), p&) is obtained. 

Other than the truncation, round-off, and numerical integration errors, the L, norm 
II P*(x) - P&a can be used as a criterion for evaluating the performance of the 
numerical algorithm consisting of Steps III and IV. Although only continuous 
functions are considered, the L, norm is used here because of its integrated effect. 
If the desired accuracy is not met, then one can repeat Steps III and IV until the 
desired accuracy is achieved. The proof of the convergence of this iteration method 
will be shown elsewhere. 

Steps I and III involve solutions of the two-point boundary value problem of the 
Sturm-Liouville type of ordinary differential equations. In general, a two-point 
boundary value problem can be solved by using shooting methods [23] with the help 
of a sophisticated ordinary differential equations solver, GEAR algorithm [24,25]. 
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However, in the range of w = 1 to w = 30, the GEAR algorithm is not as efficient 
as the simpler finite difference method with second order accuracy, e.g., the center 
difference approximation. In the range of w > 1000 where the oscillation of the 
solution is extremely high, again the GEAR algorithm becomes inefficient. It is easier 
to obtain the asymptotic solution of the two-point boundary value problem by using 
the WKBJ method [26,27] (Appendix A). 

NUMERICAL RESULTS WITH ERRORLESS DATA 

Numerical simulations are carried out for several pO(x) with errorless data in the 
range of angular frequency, 5 < w < 2000. In performing Step IV, Simpson’s rule 
is used in the numerical integration. The numerical results and their relevant 

TABLE1 

Squares of Norms are Expressed in Units of 1O-8 

Fig. {WiTI POW) 

n, No. of Method used 
Iteration in Steps I & III 11 p’* - pm’ [Ia 

2 

3 Same as above 

4 Same as above 

5 

6.98, 8.72, 10.12, 11.86, Smooth, 
13.26, 15.00, 16.40, 18.14, II P‘* - PO’ IF 
19.54, 21.28 = 15.175 

100, 110, 120, 130, 140, 150, Same as 
160, 170,180, 190 above 

210, 215, 220, 225, 230, 310, Same as 
315, 320,325,330 above 

410,415, 420, 425, 430, 435, 
440,445,450,455 

10, 20, 30, 40, 50, 460, 550, 
640,730,820 

Same as 
above 

Same as 
above 

1100,1200,1300,1400,1500, 
1600,1700,1800,1900,2000 

Same as 

Zigzag, 
II P’* - P/ IIS 
= 100.13 

Smooth, 
II P’” - PO’ II8 
= 1340.4 

3 Implicit 
finite 
difference 
Ax’ = 0.00625 

4 Same 
as above 

2 Same 
as above 

2 Shooting 
method, 
“GEAR” 

2 Same 
as above 

2 Same 
as above 

2 Same 
as above 

2 WKBJ method 

2.1802 

8.9106 

10.009 

23.121 

25.660 

54.434 

21.241 

601.92 
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FIG. 2. Comparison of the calculated and the exact normalized density profiles, with smooth 
Pow), small II P’* - pO’ 11, and errorless data in 6.5 < W’ < 21.5. 

FIG. 3. Comparison of the calculated and the exact normalized density profiles, with zigzag 
pi(x’), small II p’* - pO’ 11, and errorless data in 6.5 < W’ < 21.5. 

P I* 

---- PO 
---_ ----- c 

,.ooo ,,,I,,,, a,,, ,,,I,I,,~H 
0 0.5 LO- 

FIG. 4. Comparison of the calculated and the exact normalized density profiles, with smooth 
P~‘(x?, large IMP’*. - po’ jl, and errorless data in 6.5 < O’ < 21.5. 
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information are given in Table I and Figs. 2-9. Three typical oscillatory 
(p;‘(x) dp,(x, w,)/~x}~ are plotted in Fig. 10. The averaging kernels A(+, , x) at 
four Merent x,, are shown in Fig. 11. The primes of the independent and dependent 
variables are reinstalled in all tables and figures. 

1.000 I I I I ( , I t I , X/J 
0 0.5 I.0 . 

FIG. 5. Comparison of the calculated and the exact normalized density profiles, with smooth 
pi(x’), large I@‘* - po’ II, and errorless data in 100 Q O’ Q 190: -p’*. - - - po’. ----Pe’* 9 

I 
1.001 ‘- 

1.000, ’ I I I I I I I , , X/H 
0 0.5 1.0 - 

FIG. 6. Comparison of the calculated and the exact normalized density profiles, with smooth 
fo’Wh large II P’* - po’ II, and errorless data in 210 < W’ < 330: -p’*’ - - - Po’;----pn’* 
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RG. 7. Comparison of the calculated and the exact normalized density profiles, with smooth 
PO’W), large II P’* - p,,’ II, and errorless data in 410 < W’ < 455: 1. -p’*; - - -PO, ----pz’. 

1.000 I I I I I , , I I , X/_H 
0 0.5 I.0 

FIG. 8. Comparison of the calculated and the exact normalized density profiles, with smooth 
Pi’, large II P’* - p< 11, and errorless data in 10 < w’ = 820: -p’*; - - -p. ,. , ----pa’. 

NUMERICAL RESULTS WITH ERRONEOUS DATA 

In this section, the effects of the contaminating instrument and ambient noise on 
the accuracy of the numerical results or the intrinsic resolution of a given set of 
measured data are studied. The measurement errors are simulated by the procedure 
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FIG. 9. Comparison of the calculated and the exact normalized density profiles, with smooth 
po’(x’), large I$‘* - pO’ jl, and errorless data in 1100 < w’ < 2000; - p’*; - - - pO’; - - --pa’. 

UJ’= 6.98 -- w’= 13.26 

------ u’r 18.14 

FIG. 10. Typical Go’-+‘) dp,,‘(x’, ~‘)/dx’}~ as function of x’ shown for three different values 
of 0’. 

described in Step II. The covariance tensor of the measurement errors i? is assumed 
to be a diagonal matrix with elements 

eii = (O.OOl& dp*(o, wJdx}2, i = 1, 2, 3,..., I. (21) 

Consistent with the study of the effects of errorless data from various ranges of the 
frequency spectrum on the accuracy of the numerical results in the previous section, 
the example of Fig. 4 is used for the study here. The effect of the weight parameter s 
on the accuracy of the numerical result is shown in Fig. 12 and the numerical result 
pz(x) for the case s = 0 is plotted in Fig. 13. The trade-off curves (as vs s curves) 
for many ocean depths x1 = 0.00625, x, = 0.10625, xa = 0.20625, xq = 0.30625, 



FIG. 11. Typical averaging kernel A(x,‘, x’) as function of x’ shown for four different x0’ with 
errorless data in 6.5 < w’ < 21.5. 

x5 = 0.40625, x6 = 0.50625, x, = 0.60625, xs = 0.70625, xg = 0.80625, xl0 = 
0.90625 are shown in Fig. 14. Finally, the averaging kernels corresponding to s = 0 
at four different ocean depths are plotted in Fig. 15. Again the primes of the inde- 
pendent and dependent variables are reinstalled in all figures. 

DISCUSSION 

For the case of errorless data, all of the numerical results in Table I and Figs. 2-9 
indicate that our numerical algorithm has better resolution near the ocean surface 
than that near the ocean bottom, i.e., the numerical solutions in general are more 
accurate in the upper region of the ocean than other regions. This conclusion can 
also be drawn by carefully examining the averaging kernels in Fig. 11 where the 
averaging kernels resemble the Dirac delta function most near the ocean surface. 
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FIG. 12. With erroneous data in 6.5 < w’ < 21.5, the numerical error of the example in Fig. 4, 
characterized by II p’* - pa’ IIS, shown to be a monotonic increasing function of s. 

FIG. 13. Comparison of the calculated and the exact normalized density profYes of the example 
in Fig. 4 with erroneous data in 6.5 < w’ < 21.5 and s = 0. 

The numerical results in Table I and Figs. 2-4 suggest that the closer the initial 
guess p,,(x) to the exact solution p*(x), the more accurate the numerical solution will 
be. However, it can be shown that due to the smallness of the number (inadequate) 
of data, the limit of the iterates differs from the exact solution and depends on the 
initial iterate. The detail of this has been discussed in [2]. Hence in the real compu- 
tation, the initial guess should be made as close to the exact profile as possible. 

The numerical results in Table I and Figs. 4-9 exhibit the fact that data from lower 
frequency ranges give better numerical accuracy than those from higher frequency 
ranges. This outcome is not surprising at all, because in Steps I and III of our numerical 
simulations the ordinary differential equations solvers used here are inefficient in the 
high frequency range. At the same time, in Step IV of our numerical simulations the 
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FIG. 14. With erroneous data in 6.5 < w’ < 21 S, trade-off curves 1,2,3,..., and 10 corresponding 
to x,,’ = 0.00625, 0.10625, 0.20625, 0.30625, 0.40625, 0.50625, 0.60625, 0.70625, 0.80625, and 
0.90625, respectively, one shown. The top and bottom end points correspond to s = 0 and s = 1, 
respectively. x denotes s = 1 - lo-’ and o denotes s = 1 - 0.5 x lo-‘. 

FIG. 15. Typical averaging kernel as a function of x’ shown for four different x,,’ with erroneous 
data in 6.5 < w’ < 21.5 and s = 0. 
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kernel of the Fredholm integral equation of the first kind Eq. (9) is much less oscil- 
latory in the lower frequency range than that in the higher frequency range (Fig. 10). 
This means that the numerical solution of Eq. (9) obtained by using the same size of 
the integration subinterval Ax and the same quadrature formula is more accurate 
in the lower frequency range than in the higher frequency range; large reduction of 
the size of AX for the case of high frequency will not only make the quadrature 
formula more inefficient but also will increase greatly the globe round-off error in the 
numerical computation. Hence in actual computation, low frequency data are much 
more preferred than those in high frequency range. Moreover, there are several other 
advantages for using data from the low frequency range and they will be discussed later. 

For the case of erroneous data, Fig. 12 shows that the accuracy of the numerical 
result decreases as the parameter s increases. Even when s = 0 (Fig. 13) corresponding 
to the minimization of the spread alone, the accuracy is poorer than the analogous 
case with errorless data. This means that no matter how small the contaminating 
instrument and ambient noise can be, they will lower the performance of the numerical 
algorithm. 

The gross behavior of the trade-off curves (Fig. 14) is the same for all x. The 
random error decreases monotonically with increasing spread. The decrease is rapid 
at small values of the spread, followed by a rather abrupt leveling off with increasing 
spread. The end point of the curve corresponding to minimum spread and maximum 
random error corresponds to s = 0 while the opposite end of the curve corresponds 
to s = 1. In actual computation, a happy compromising choice of s is in the range of s 
corresponding to the neighborhood of the bottom of the steep portion of the trade-off 
curves (0.5 5 (1 - s) 1 10’ ,( 1). In this way, the effect of random error is almost 
minimized, while the spread is also near its minimum. Moreover, upon examining 
the trade-off curves for different x, one finds that contrary to the case of errorless data 
where the numerical algorithm has the best resolution near the top of the ocean layer, 
the random errors in the data have shifted the maximum resolution of the numerical 
algorithm to somewhere in the middle of the ocean layer. This fact has been born out 
also from the study of the averaging kernels for different x in Fig. 15. 

In the real situation, there are three major reasons for favoring the use of the low 
frequency data (other than the accuracy of the numerical algorithm). First, the low 
frequency component acoustic waves are less sensitive to the ocean bottom irre- 
gularities and other scattering marine objects than the high frequency component 
waves. For example, if the ocean depth is 5000 m and the average sound velocity is 
1500 m/set, then the normalized angular frequency range 5 < w’ < 50 corresponds 
to the real frequency range 0.239 < f < 2.387 Hz with wavelength A in the range 
628 < h < 6284 m. Hence it is conservative to say that our numerical algorithm 
with measured data in the above-mentioned low frequency range will not be sensitive 
to any irregularity with size less than 500 m. 

Second, the low frequency component acoustic waves experience less damping 
due to viscosity than the high frequency waves when propagating through a fixed 
distance in the ocean, so the received reflected signals will not be drowned out by the 
contaminating instrument and ambient noise. 

sS1/25/4-5 
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Third, low frequency components of both incident and reflected acoustic pulses 
contain more energy than the high frequency components. Hence in practice, the 
adverse effects of the contaminating instrument and ambient noise are minimized. 
To justify the statement about the spectral energy, a numerical simulation of a short 
acoustic pulse propagating through an ocean layer with the exact density profile 
p*(x) is performed in Appendix B. This third advantage of low over high frequencies 
can be overcome by proper choice of hardware designs, e.g., transducers. 

TABLE II 

Fig. Ma%<e I P*(X) - POWI Mw<sa I P*(X) - ~n(x)I Data 

2 0.13 pw 

3 0.64 ptc 

4 l.ooPts 

13 1.00 Pta 

0.05 Pta Errorless 

0.13 Ptv Errorless 

0.16 PW Errorless 

0.18 rt. With random errors 

To obtain a more realistic but conservative evaluation of the performance of the 
numerical algorithm in this paper with data in the low refquency range, the maximum 
pointwise numerical error should be used as the evaluation criterion. Upon introducing 
the total variation of the density profile, ptu = 1 Maxof,cH p(x) - MinoCzGu p(x)/, 
which equals O.O0385p(O) here and is less than O.O04p(O) in any real situation [20], 
our numerical results are given in Table II. The numerical results indicate that if the 
low frequency data are errorless and the initial density profile is close enough to the 
true profile, the maximum possible pointwise numerical error is less than 5 % of the 
total variation of the density prohle. The accuracy of the numerical algorithm can be 
improved greatly if there are more measured data available and improevments in the 
numerical accuracy are made for each individual step of the numerical algorithm. 
However, in this way the expense incurred in the numerical computation will be 
greatly increased. Hence in practice, on a priori decision on how to trade off must be 
made for each problem. 

APPENDIX A 

For w > 100, the solution of the two-point boundary value problem Eq. (7) 
becomes highly oscillatory. Hence the GEAR algorithm becomes inefficient. An 
excellent method to circumvent this difficulty is to construct the asymptotic solution 
of the two-point boundary value problem for large w by using the WKBJ method 
[26,27]. Again in this and the next appendix, the primes are dropped for convenience. 
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First, upon setting u,(x, 0) = pn(x, w)/py’(x), Eq. (7) is transformed into 

vi&% w) + Jn2(x, 0) &G 6J> = 0, 

z&(0, w) = 1) (A-1) 

Un’Q, w) + +G1(l) p,‘(l) bdl, WI = 0, 

where 

.4s2k 4 = !Ppn’(x) PW - B&m Pn’W” + P&h” (-4.2) 

and “t” z d/dx. If pn(x) # 0 for all x and pi(x) is continuous, which is the case here, 
the asymptotic solution of Eq. (A.l) is given by 

Y,(x, w) = Y2(x, 0) {a,(w) cos qL(x, w) + b,(w) sin 4,(x, 4, (A-3) 

where 

&Lx, ~1 = is J&L 4 4% (A.4) 

a,(w) = Ji’“(O, co), (A.9 
and 

b,(w) = {.I;‘“( 1, w) JA’“(O, W) sin &( 1, ~0) + &T,‘( 1,~) J;s’2( 1,~) Ji”(O, 0~) cos +,( 1,~) 

- p,‘( 1) p,‘( 1) J;1’2( 1, W) $“(O, Cu) cos $,( 1) W)j/ 

V~‘“U, 4 cos q&(1, 4 - &T,‘(l, w) J;3’2(1, 0) sin $,(I, W) 

+ -h2(1> p,‘(l) .PV, ~1 sin +,U, w>>. (A.6) 

Then pn(x, W) = Y&C, w) pz”(x) is the asymptotic solution of Eq. (7) and it is used 
in the integrand of Eq. (9). 

APPENDIX B 

The propagation of a short acoustic pulse through the ocean layer with the density 
protie p*(x) is described by the solution of the following initial boundary value 
problem of the linear hyperbolic system, 

au/at = -p*-y~) apjax, O<x<l, 

apjat = -au/ax, 0 < t, 

with initial conditions 

u(x, 0) = p(x, 0) = 0, 

(B.1) 

03.2) 
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and boundary conditions 
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U(1, t) = 0, 

p(0, t) = lOO{l - cos(2OO~t)}, 0 < t < 0.01 (B-3) 
zzz 0, I > 0.01. 

To damp put the stable numerical oscillations (Gibb’s phenomenon) in the neigh- 
borhood where the solution has either a discontinuity or a steep gradient; an artificial 
viscosity term v&/ax2 is added to the right-hand side of the first equation of Eq. (B. 1) 
[28]. Along with it, an extra boundary condition, &@x 13c=,, = -20,000~ sin(2OOnt) 
for 0 < t < 0.01 and 0 for t > 0.01 must be added to Eq. (B.3). 

A 

,- 

,- 

3. 

3. 

, 

r\ 
\ 

\ 

FIG. 16. Fourier cosine transform of ~(0, t) plotted as a function of w’. 

The above system is solved numerically by using a method which is based on the 
method of lines with the space variable x discretized by a finite element collocation 
scheme and the integration of time by the GEAR algorithm [29]. In particular, the 
Fourier cosine transform of ~(0, t) is computed by using a fast Fourier transform 
routine [30] and is plotted in Fig. 16. It is obvious that the low frequency spectrum 
contains more energy than the high frequency spectrum. If the pulse has longer 
duration, then this phenomenon will be even more pronounced. 
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